Integration and Microlocal Analysis in Colombeau Algebras of Generalized Functions
نویسندگان
چکیده
منابع مشابه
Microlocal Analysis of generalized pullbacks of Colombeau functions
In distribution theory the pullback of a general distribution by a C∞function is well-defined whenever the normal bundle of the C∞-function does not intersect the wavefront set of the distribution. However, the Colombeau theory of generalized functions allows for a pullback by an arbitrary c-bounded generalized function. It has been shown in previous work that in the case of multiplication of C...
متن کاملMicrolocal Asymptotic Analysis in Algebras of Generalized Functions
We introduce a new type of local and microlocal asymptotic analysis in algebras of generalized functions, based on the presheaf properties of those algebras and on the properties of their elements with respect to a regularizing parameter. Contrary to the more classical frequential analysis based on the Fourier transform, we can describe a singular asymptotic spectrum which has good properties w...
متن کاملMicrolocal properties of basic operations in Colombeau algebras
The Colombeau algebra of generalized functions allows to unrestrictedly carry out products of distributions. We analyze this operation from a microlocal point of view, deriving a general inclusion relation for wave front sets of products in the algebra. Furthermore, we give explicit examples showing that the given result is optimal, i.e. its assumptions cannot be weakened. Finally, we discuss t...
متن کاملGeophysical modeling and microlocal properties of Colombeau functions
In global seismology Earth’s properties of fractal nature occur. Zygmund classes appear as the most appropriate and systematic way to measure this local fractality. For the purpose of seismic wave propagation, we model the Earth’s properties as Colombeau generalized functions. In one spatial dimension, we have a precise characterization of Zygmund regularity in Colombeau algebras. This is made ...
متن کاملGeophysical modelling with Colombeau functions: Microlocal properties and Zygmund regularity
In global seismology Earth’s properties of fractal nature occur. Zygmund classes appear as the most appropriate and systematic way to measure this local fractality. For the purpose of seismic wave propagation, we model the Earth’s properties as Colombeau generalized functions. In one spatial dimension, we have a precise characterization of Zygmund regularity in Colombeau algebras. This is made ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1999
ISSN: 0022-247X
DOI: 10.1006/jmaa.1999.6565